LeetCode题解 => 204.计算质数(五十)

计算质数

一、LeetCode题解

瞧一瞧~

二、算法题

题目

素数的定义很简单,如果一个数如果只能被 1 和它本身整除,那么这个数就是素数。

不要觉得素数的定义简单,恐怕没多少人真的能把素数相关的算法写得高效。比如让你写这样一个函数:

// 返回区间 [2, n) 中有几个素数 

// 比如 countPrimes(10) 返回 4
// 因为 2,3,5,7 是素数

解法一(暴力法)

注意这样写重复大量不必要的运算,比如,你计算3是不是素数的时候,就不需要计算9是不是素数,显然3的平方9不是素数

  • 下面的是超时的最直接的版本
代码
// 判断整数 n 是否是素数
function isPrime(n) {
    for (let i = 2; i <= n; i++)
        if (n % i == 0) return false;// 有其他整除因子
    return true;
}
function countPrimes(n) {
    var count = 0;
    for (let i = 2; i < n; i++){
        if (isPrime(i)) count++;
    }
    return count;
}

在这里插入图片描述

  • 优化边界,勉强通过,惨不忍睹。。。
// 判断整数 n 是否是素数
function isPrime(n) {
    for (let i = 2; i * i <= n; i++) //这是唯一区别
        if (n % i == 0) return false;// 有其他整除因子
    return true;
}
function countPrimes(n) {
    var count = 0;
    for (let i = 2; i < n; i++){
        if (isPrime(i)) count++;
    }
    return count;
}
结果

在这里插入图片描述

解法二(剔除法)

  • 通过 let j = 2 * i; j < n; j += i,不断的剔除不需要比对的元素
var countPrimes = function(n) {
    let count = 0
    signs = []
    for (let i = 2; i < n; i++) {
        if (!signs[i]) {
            count++
            for (let j = 2 * i; j < n; j += i) {
                signs[j] = true
            }
        }
    }
    return count
};
结果

在这里插入图片描述

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 博客之星2020 设计师:CY__ 返回首页